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Abstract. In the context of the standard model of particle physics, there is a definite upper limit to the
density of stable compact stars. However, if there is a deeper layer of constituents, below that of quarks
and leptons, stability may be re-established far beyond this limiting density and a new class of compact
stars could exist. These objects would cause gravitational lensing of gamma-ray bursts and white dwarfs,
which might be observable as line features in the spectrum. Such observations could provide means for
obtaining new clues about the fundamental particles and the nature of cold dark matter.
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1 Introduction

The different types of compact objects traditionally con-
sidered in astrophysics are white dwarfs, neutron stars
(including quark and hybrid stars), and black holes. The
first two classes are supported by Fermi degeneracy pres-
sure from their constituent particles. For white dwarfs,
electrons provide the pressure counterbalancing gravity.
In neutron stars, the neutrons play this role. For black
holes, the degeneracy pressure is overcome by gravity and
the object collapses to a singularity, or at least to the
Planck scale (ρ ∼ 1093 g/cm3). For a recent review of
neutron stars, hybrid stars, and quark stars, see, e.g., [1]
and references therein.

The distinct classes of degenerate compact stars orig-
inate directly from the properties of gravity, as was made
clear by a theorem of Wheeler and collaborators in the
mid 1960s [2]. This theorem states that for the solutions
to the stellar structure equations, whether Newtonian or
relativistic, there is a change in stability of one radial mode
of vibration whenever the mass reaches a local maximum
or minimum as a function of the central density. The the-
orem assures that distinct classes of stars, such as white
dwarfs and neutron stars, are separated in central density
by a region in which there are no stable configurations.

In the standard model of quarks and leptons (SM),
the theory of the strong interaction between quarks and
gluons predicts that with increasing energy and density,
the coupling between quarks asymptotically fades away [3,
4]. As a consequence of this so-called asymptotic freedom,
matter is expected to behave as a gas of free fermions at
sufficiently high densities. This puts a definite upper limit
to the density of stable compact stars, since the solutions
to the stellar equations end up in a never-ending sequence

of unstable configurations, with increasing central density.
Thus, in the light of the standard model, the densest stars
likely to exist are neutron stars, quark stars, or the slightly
more dense hybrid stars [5–7]. However, if there is a deeper
layer of constituents, below that of quarks and leptons, the
possibility of a new class of compact stars opens up [8].

Though being a quantitatively successful theory, the
SM consists of a large number of exogenous ad hoc rules
and parameters, which were introduced solely to fit the ex-
perimental data. The SM provides no explanation for the
deeper meaning of these rules. At a closer look, however,
the SM seems to be full of hints to its deeper background.
By considering these rules from a historical point of view,
a “simple” and appealing explanation is compositeness [9],
i.e., that the quarks, leptons, and gauge bosons are com-
posite particles, built out of more elementary preons [10].
Preons provide natural explanations for the particle fam-
ilies of the SM and phenomena such as neutrino oscilla-
tions, mixing of the weak gauge bosons, and quarks of
different flavour.

Over the last decades, many papers have been written
about preons, but so far there are no direct evidence for
(or against!) their existence. In the late 1970s, a number
of consistency conditions were formulated by ’t Hooft [11].
In the same work, a vector-like non-Abelian SU(3) gauge
group was considered, but no solution to the consistency
conditions was found. Later, it was shown that with an-
other choice for the gauge group and the flavour structure
of preons, e.g., three different preon flavours, the consis-
tency conditions are satisfied [12]. For a more detailed
discussion of preon models, see [9, 10, 13] and references
therein.
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Not all clues favour preon models, but the existence
of preons is still an open question and, as a consequence,
so is the question whether a new class of compact stars
exists or not. This paper is based on the ideas and results
presented in [8]. Assuming that quarks and leptons are
composite particles, built out of more elementary preons,
I will:

I. Give an estimate for the mass and radius of stars
composed of preons.

II. Show that for some particular equations of state, sta-
ble solutions to the general relativistic stellar equa-
tions do exist, with densities far beyond the maxi-
mum density in stars composed of quarks and lep-
tons.

III. Briefly discuss some potential astrophysical conse-
quences and how these objects could be observed.
Herein lies the potential importance of this qualita-
tive speculation, since these objects are candidates
for cold dark matter and could be found as, e.g., grav-
itational “femtolenses”.

2 The maximum density prophecy

In order to explain why there is a maximum density for
stars composed of quarks and leptons, or any other com-
posite particle composed of these two species, e.g., nucle-
ons and 56Fe, some basic knowledge about the theory of
compact stars is needed. In the following, I give a short
introduction and a summary of the main points.

Due to the high density and large mass of compact
stars, a general relativistic treatment of the equilibrium
configurations is necessary. This is especially important
for the analysis of stability when a star is subject to ra-
dial oscillations. Such oscillations are inevitably excited to
some extent, and for a star to be stable the amplitude of
the oscillations must not grow spontaneously with time.
The starting point for a general relativistic consideration
of compact stars is the Oppenheimer-Volkoff (OV) equa-
tions [14] for hydrostatic, spherically symmetric equilib-
rium:

dp

dr
= −G

(
p + ρc2

) (
mc2 + 4πr3p

)
r (rc4 − 2Gmc2)

, (1)

dm

dr
= 4πr2ρ. (2)

Here p is the pressure, ρ the density and m = m(r) the
mass within the radial coordinate r. The total mass of the
star is:

M = 4π

∫ R

0
r2ρ dr, (3)

where R is the coordinate radius of the star. Combined
with an equation of state (EOS), p = p(ρ), obtained from
some microscopic (quantum field) theory, the OV solu-
tions give the possible equilibrium states of spherically
symmetric stars.

As an example, I show two sequences of compact star
configurations. One is composed of nuclear matter (neu-
tron stars) and the other of a deconfined quark matter
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Fig. 1. Two sequences of compact stars obtained by solving
the OV equations. The hybrid stars have a core of unpaired
quarks and the nuclear matter crust extends down to 1% of the
nuclear saturation density. The neutron star sequence is stable
up to the maximum mass configuration (I). For this particular
equation of state, this configuration has the highest possible
(central) density, as stars more massive and dense than this
are unstable and collapse into black holes. The stable hybrid
star sequence terminates at II. M� � 2 × 1030 kg is the solar
mass

core with a nuclear matter crust (hybrid stars), see Fig. 1.
These configurations were obtained by solving the OV
equations (1)–(2) numerically. The low-density part of the
nuclear matter EOS was extracted from [15] and the high-
density part comes from [16]. For the deconfined quark
matter phase an unpaired massless quark approximation,
ρc2 = 3p + 4B, was used. The “bag pressure”, B, was fit-
ted such that the transition from quark matter to nuclear
matter occurs at 1% of the nuclear saturation density,
n0 ∼ 0.16 fm−3. The density where cold nuclear matter
decompose into quark matter is unknown, so the transi-
tion density used here serves as an example only.

The composition of matter at neutron star densities is
an open question and many different models for the EOS
exist, e.g., EOSs for nuclear matter, matter with hyper-
ons, and superconducting quark matter. Regardless of the
specific model, the maximum mass and corresponding ra-
dius are roughly a few solar masses, M� � 2 × 1030 kg,
and 10 km. No substantially more dense configurations
composed of quarks and leptons are possible. The motiva-
tion goes roughly like this: At white dwarf densities, the
nucleons occupy nuclei that contribute little to the pres-
sure, and electrons provide the pressure counterbalancing
gravity. With increasing density, the pressure rises and
the electrons become more energetic. Eventually, the elec-
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trons are captured by protons and the pressure drops. As a
consequence, the white dwarf sequence becomes unstable
and terminates. At roughly six to seven orders of mag-
nitude higher density than in the maximum-mass white
dwarf, nuclei dissolve and the Fermi pressure of nucleons
(in nuclear matter) and quarks (in quark matter) stabilize
the next sequence of stable stars. The maximum mass of
this sequence is a few solar masses, for all compositions
(nuclear matter, quark matter, hyperons etc.). The rea-
son why this is the limiting mass of stable compact stars,
composed of quarks and leptons, is simply that there is no
particle that may stabilize another sequence of stars. Each
quark flavour is accompanied by an extra Fermi sea that
relieves the growth of pressure and quark Fermi pressure
is only won at the expense of pressure from other species.
Also, the chemical potential is lower than the charm mass,
so quarks heavier than the strange quark do not appear
in stable stars [17,18].

Hence, beyond the very rich and beautiful landscape of
structures composed of quarks and leptons, at 1016 g/cm3,
there is again a desert of instability, just like there are no
stable stellar configurations in-between white dwarfs and
neutron stars. The question is now if the desert ends before
the Planck scale.

3 Compact stars beyond the desert

A definite upper limit to the density of any spherically
symmetric star can be obtained from the Schwarzschild
radius,

R = 2GM/c2, (4)

since any object more dense than this would collapse into
a black hole. By using the expression for the Schwarzschild
radius and the relations:

M ∼ mA, (5)

R ∼ d0A
1/3, (6)

where A is the number of constituent particles, m their
mass, and d0 the distance between adjacent particles, an
order of magnitude estimate for the maximum mass and
radius of the corresponding class of compact stars can be
calculated. For a neutron star composed of nucleons of
mass mn � 939 MeV/c2 and size dn � 0.5×10−15 m, (4)–
(6) give A ∼ 3 × 1057 baryons, R ∼ 7 km, and M ∼
5 × 1030 kg ∼ 2.5 M�. In reality, a somewhat larger ra-
dius and smaller mass are expected, since the density is
non-uniform in the star, say R ∼ 10 km and M ∼ 2 M�.
In any case, the correct order of magnitude for the maxi-
mum mass and corresponding radius of a neutron star is
obtained. The average density is ρ̄ � 1015 g/cm3.

Since the Schwarzschild limit is almost reached already
for the most massive neutron stars, it is reasonable to
assume that this should be the case also for a more dense
class of compact stars. Then, in order to provide similar
estimates for the mass and radius of a star composed of
preons, something must be known about the mass and
“size” of preons. Before trying to achieve this, it should

be emphasized that we know nothing about preons, not
even if they exist. So whatever method used, the result is
a speculative order of magnitude estimate. But as I will
show, it is still possible to reach some qualitative results.

Guided by the observation that the density of nuclear
matter is roughly of the same order of magnitude as for de-
confined quark matter, I assume that the density of preon
matter is roughly of the same order of magnitude as for
a closely spaced lattice of some “fundamental” particle of
the SM. In this case the problem is simplified to finding
a fundamental SM particle, with known mass and maxi-
mum spatial extension. The simplest and least ambiguous
choice seems to be the electron, since the mass of an elec-
tron is well known, and from scattering experiments it is
known that electrons do not have any visible substructure
down to a scale of ∼ �c/TeV ∼ 10−19 m. Using the elec-
tron mass, me � 511 keV/c2, and an upper estimate for
its radius, re ∼ 10−19 m, the maximum mass and radius
of a star composed of preons is found to be of the order
M ∼ 102 M⊕ and R ∼ 1 m. Here M⊕ � 6 × 1024 kg is
the mass of the Earth. The average density is of the order
∼ 1023 g/cm3.

This crude estimate gives metre-sized objects that are
a hundred times more massive than the Earth. Now, I will
try to be a bit more specific. Especially, it would be inter-
esting to see whether such objects could be stable or not.
In order to do this, I extrapolate an effective model for
hadrons, the so-called MIT bag model [19]. In its simplest
form the MIT bag is a gas of massless fermions (partons),
enclosed in a region of space (the bag) subject to an ex-
ternal pressure B (the bag constant). The EOS for a gas
of massless fermions is ρc2 = 3p and by including B one
obtains:

ρc2 = 3p + 4B. (7)

This result does not depend on the degeneracy factor,
i.e., the number of fermion species, spin, etc. For a single
hadron the pressure is practically zero, so that ρc2 = 4B
and the total energy, E, of a hadron is [19]:

E = 4B〈V 〉, (8)

where 〈V 〉 is the time-averaged volume of the bag. Hence,
the bag pressure, B, must be of the order of 1 GeV/fm3 for
hadrons. This is in agreement with experiments and other
independent methods of calculating light-quark hadronic
masses; most of the mass-energy is not due to the “bare
mass” of the constituents, but the confining interactions.

The MIT bag model is frequently used for the de-
scription of deconfined quark matter and applications to
compact stars. Its usefulness in this regime originates in
asymptotic freedom, simplicity and the possibility to in-
clude pertubative corrections. The bag pressure, B, is in-
troduced in order to confine partons, it is a phenomenolog-
ical parametrization of the strong interactions that confine
quarks into hadrons. These interactions are present also
in deconfined quark matter, so the “bag model” should be
applicable also in this regime. However, the value of the
bag pressure is different, since the density is higher and the
interactions weaker. Thus, the so-called bag constant, B,
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is not really a constant, but a density dependent parame-
ter. For strange quark matter, the bag constant is roughly
B1/4 ∼ 150 MeV/(�c)3/4 [20] and the corresponding con-
tribution to the energy density is 4B ∼ 260 MeV/fm3.
This means that a considerable fraction of the density in
quark matter, roughly 1015 g/cm3, is due to the bag con-
stant, i.e., interactions.

Now, the fundamental assumption here is that preons
exist and are fermions. Since preons constitute light par-
ticles, such as neutrinos and electrons, the “bare” preon
mass should be fairly small. Then a massless fermion ap-
proximation, ρc2 = 3p, can be used. This EOS does not
allow for stable super-dense stars, however, so something
more is needed. And that ‘something’ is dynamics, the
preon interactions that give mass-energy to the particles of
the SM. The question is how, since there is so far no quan-
titative model for preon interactions. Indeed, a fundamen-
tal problem in preon models is to find a suitable dynam-
ics, capable of binding preons into fermions with masses
essentially negligible with respect to their inverse radius.
With this in mind, the principle of parsimony (“Occam’s
razor”) seems to be the only guidance.

A simple solution is to include the dynamics in terms of
a bag constant [8], which roughly reproduces the minimum
energy density of an electron,

B =
E

4〈V 〉 ∼ 3 × 511 keV
16π(10−19 m)3

∼ 104 TeV/fm3

=⇒ B1/4 ∼ 10 GeV/(�c)3/4. (9)

The very high density contribution from the bag constant,
4B/c2 ∼ 105 TeV c−2fm−3 ∼ 1023 g/cm3, might seem a
bit peculiar. But then it should be kept in mind that the
density contribution from the bag constant in deconfined
quark matter is ∼ 1015 g/cm3, which is a large fraction
of the maximum density in any type of star composed of
quark matter. So the high density is not that peculiar. On
the contrary, if something is to be expected, it should be
that B is much higher for preon matter than for quark
matter, since a “preon bag” is smaller and more dense
than a hadron. In the following, for simplicity, I put �c = 1
for the bag constant and express B1/4 in eV.

The density introduced by the bag constant is of the
same order of magnitude as the density used in the mass-
radius estimate above. The improvement here is the tran-
sition to a proper EOS for fermions; the possibility to
apply the EOS in a general relativistic framework, for the
analysis of mass-radius relations and stability. In addition
to the general relativistic analysis, the mass and radius
can be estimated from first principles as a function of the
bag constant [21]. The result is somewhat similar to the
original Chandrasekhar limit, but the role of the fermion
mass is replaced by the bag constant, B,

M =
16π

3c2 BR3, (10)

R =
3c2

16
√

πGB
. (11)

Inserting B1/4 ∼ 10 GeV in (10)–(11) an estimate for
the (maximum) mass M � 102 M⊕ and radius R ∼ 1 m
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Fig. 2. The maximum mass of preon stars vs. the bag con-
stant B. The solid line represents the general relativistic OV so-
lutions, while the dashed line represents the Newtonian (Chan-
drasekhar) estimate. Despite the high central density, the mass
of these objects is below the Schwarzschild limit, as is al-
ways the case for static solutions to the stellar equations.
M⊕ � 6 × 1024 kg is the Earth mass

of a preon star is obtained. This is consistent with the
somewhat simpler mass-radius estimate given above.

Since B1/4 ∼ 10 GeV is only an order of magnitude
estimate for the lower limit, the bag constant is consid-
ered as a free parameter of the model, constrained by a
lower limit of B1/4 = 10 GeV and an upper limit chosen
as B1/4 = 1 TeV. The latter value corresponds to a spa-
tial extension of the electron of the order ∼ �c/103 TeV ∼
10−22 m. In Figs. 2 and 3 the maximum mass and radius of
a preon star are plotted as a function of the bag constant.

A necessary (but not sufficient) condition for stability
of a compact star is that the total mass is an increas-
ing function of the central density, dM/dρc > 0. This con-
dition is a consequence of a generic microscopic relation
known as Le Chatelier’s principle. Roughly, this condition
implies that a slight compression or expansion of a star
will result in a less favourable state, with higher total en-
ergy. Obviously, this is a necessary condition for a stable
equilibrium configuration. Equally important, a star must
be stable when subject to (small) radial oscillations, in the
sense that the amplitude of the oscillations must not grow
spontaneously with time. Otherwise a small perturbation
would bring about a collapse of the star.

The equation for the analysis of such radial modes of
oscillation is due to Chandrasekhar [22]. An overview of
the theory, and some applications, can be found in [23].
A catalogue of various numerical methods for solving the
original set of equations can be found in [24]. However,
a far more practical form of the oscillation equations has
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Fig. 3. The maximum radius of preon stars vs. the bag
constant. The solid line is the “apparent” radius, R∞ =
R/

√
1 − 2GM/Rc2, as seen by a distant observer. The dashed

line represents the general relativistic coordinate radius ob-
tained from the OV solution. The dotted line represents the
Newtonian (Chandrasekhar) estimate

been derived by Gondek et al. [25]. The details of the
stability analysis can be found in [8]. Here I summarise
only the main points.

Assuming a time dependence of the radial displace-
ment of fluid elements of the form eiωt, the equation gov-
erning the radial oscillations is a Sturm-Liouville eigen-
value equation for ω2. A necessary and sufficient condi-
tion for stability is that all ω2

i are positive, since imagi-
nary frequencies give exponentially increasing amplitudes.
Furthermore, since ω2

i are eigenvalues of a Sturm-Liouville
equation, it turns out that it is sufficient to prove that the
fundamental (nodeless) mode, ω2

0 , is positive for a star
to be stable. In Fig. 4, the first three oscillation frequen-
cies, fi = ωi/2π, for various stellar configurations with
B1/4 = 100 GeV are plotted. In agreement with the theo-
rem of Wheeler et al. [2] the onset of instability is the point
of maximum mass, as ω2

0 becomes negative for higher cen-
tral densities. Thus, for B1/4 = 100 GeV, preon stars are
stable up to the maximum mass configuration. The same
is true for other values of B [8].

Despite the large uncertainty regarding preon inter-
actions, here manifested as a large uncertainty in the bag
constant, preon stars should have central densities beyond
∼ 1023 g/cm3. This makes preon stars fundamentally dif-
ferent from the traditional types of compact stars, since
such high densities implies that the stars must be very
small and light in order to be stable, see Fig. 5.
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Fig. 4. The mass and the first three eigenmode oscillation
frequencies (f0, f1, f2) vs. the central density of preon stars.
Here, a fixed value of B1/4 = 100 GeV has been used. For the
maximum mass configuration (I) the fundamental (nodeless)
mode, f0, has zero frequency, indicating the onset of instability.
Preon stars with densities below the density of the maximum
mass configuration are stable

4 Formation and detection

The list of possible connections between the properties of
the fundamental particles and the large scale structures
in the universe is long. However, beyond a density of ∼
1023 g/cm3, not much has been proposed, since there are
strong arguments against the existence of stable objects
beyond ρ ∼ 1016 g/cm3. That is, if quarks and leptons are
fundamental entities.

If preons exist and objects composed of preon mat-
ter as small and light as suggested here are stable, den-
sity fluctuations in the early universe might have pro-
duced primordial preon stars (or “nuggets”). As this ma-
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Fig. 5. The different types of compact stars traditionally con-
sidered in astrophysics are white dwarfs and neutron stars (in-
cluding quark and hybrid stars). In white dwarfs, electrons
provide the Fermi pressure counterbalancing gravity. In neu-
tron stars, the neutrons (quarks, hyperons etc.) play this role.
If quarks and leptons are composite particles, a new class of
compact stars (preon stars) could exist. The minimum density
(I) of preon stars is roughly given by the minimum density of
leptons and quarks. The minimum size (II) for a given central
density is due to the Schwarzschild radius (actually 4/3 of it)
and a maximum size (III) exists due to instability

terial did not take part in the ensuing nucleosynthesis, the
abundance of preon nuggets is not constrained by the hot
big bang model bounds on baryonic matter. Also, preon
nuggets are immune to Hawking radiation [26] that rapidly
evaporates small primordial black holes, making it possi-
ble for them to survive to our epoch. They can therefore
serve as the mysterious dark matter needed in many dy-
namical contexts in astrophysics and cosmology [27, 28].
The idea that preons could be connected to dark mat-
ter is already recognized in the literature [29,30], but the
picture presented here is rather different.

The Friedmann equation for the early universe is:

H2(t) =
8πGρ

3
, (12)

where ρc2 ∼ T 4 in the radiation-dominated era (Boltz-
mann’s law). When including the number of internal de-
grees of freedom, geff , an expression for the Hubble pa-
rameter, H, in units where � = c = kB = 1, is [31]:

H � 1.66
√

geff
T 2

mpl
. (13)

Here T is the temperature in eV, geff the effective num-
ber of degrees of freedom and mpl � 1.2 × 1019 GeV the

Planck mass. For the SM, the fermions, and the gauge and
Higgs bosons give geff(T = 1 TeV) = 106.75. In the preon
phase, this number should be smaller, say geff ∼ 10 for
simplicity. Then the Hubble radius at a temperature of
1 TeV is H−1 ∼ 1 mm and the mass within the Horizon
(a causally connected region) is ρH−3 ∼ 10−1 M⊕. This
is the maximum mass of any structure that could have
been formed in this early epoch. Hence, the maximum
mass within causally connected regions, at the minimum
temperature when deconfined preon matter might have
formed preon nuggets (and the particles of the SM), is of
the correct order of magnitude for stable configurations.

A potential problem is that the Jeans length, which
defines the minimum length scale of regions that can con-
tract gravitationally, was roughly of the same order of
magnitude as the Hubble radius at that temperature. The
Jeans length, λJ , is [31]:

λJ = vs

√
π

Gρ0
, (14)

where vs is the speed of sound and ρ0 the average back-
ground density. For a relativistic fluid with EOS ρc2 =
3p+4B the speed of sound is vs = c/

√
3 and λJ ∼ 1 mm ∼

H−1. However, considering the high level of approxima-
tion used here, this is not yet a serious problem. It merely
shows that the numbers are in the correct intervals.

But, perhaps it will be the other way around. Af-
ter all, Popper’s idea that we make progress by falsify-
ing theories is not always true. By utilizing gamma-ray
bursts (GRB) or white dwarfs in the large magellanic
cloud as light sources, gravitational lenses with very small
masses might be observable as diffraction line features in
the spectrum [32–35]. For a lens of mass 10−16 M� ≤ M ≤
10−11 M� the angular separation of images would be in
the femto-arcsec range (“femtolensing”). For more mas-
sive lenses, M ≤ 10−7 M�, the angular separation is in
the pico-arcsec range (“picolensing”). The mass within the
Hubble radius at T = 1 TeV is ∼ 10−1 M⊕ ∼ 10−7 M�.
This roughly defines the maximum mass of preon nuggets
that could be abundant enough to be observed as grav-
itational lenses. Hence, preon nuggets fall in the correct
mass range for picolensing and femtolensing.

In Fig. 6, the magnification of a distant point light
source due to gravitational lensing by an intermediate
preon nugget is plotted as a function of the dimension-
less frequency:

ν =
ν̃(1 + zL)2GM

c3 , (15)

where M (zL) is the mass (redshift) of the lens and ν̃
the frequency of light. This result was calculated with a
physical-optics model, as described in [34]. In principle,
the time dependent amplitude due to a single light pulse
from the source was calculated and then the power spec-
trum was obtained by a Fourier transform of the ampli-
tude. The magnification is normalized to a unit flux in
the absence of a lens, i.e., the flux entering the detector
is obtained by multiplying the magnification with the flux
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Fig. 6. |ψ|2, the magnification of a distant point light source
vs. the dimensionless frequency, ν = ν̃(1 + zL)2GM/c3, due
to gravitational lensing by an intermediate preon star (or
“nugget”). The flux entering the detector is obtained by mul-
tiplying the magnification, |ψ|2, with the flux in the absence
of a lens. For a 10−6 M⊕ preon star located in the halo of our
galaxy, ν = 1 corresponds to a photon energy of 0.14 keV. See
the text for further details

in the absence of a lens. The shape of the magnification
function depends on the relative position of the source and
the lens. Here the source is slightly off-axis, corresponding
to θ = 0.2 in [34].

As mentioned in [8], preon stars might also form in
the collapse of ordinary massive stars, if the collapse is
slightly too powerful for the core to stabilize as a neu-
tron star, but not sufficiently violent for the formation of
a black hole. Due to the potentially very large magnetic
field and rapid rotation of preon stars formed in this way,
the astrophysical consequences could be important, e.g.,
for acceleration of ultra-high energy (UHE) cosmic rays.
However, the possibility to expel such a large fraction of
the mass of the progenitor star needs to be better under-
stood. What should be noted here is merely a potential
connection to UHE cosmic rays, which might provide a
second means for locating and observing preon stars.

5 Conclusions

If there is a deeper layer of fermionic constituents (pre-
ons), below that of quarks and leptons, a new class of
stable compact stars could exist. By fitting a simple equa-
tion of state for fermions to the minimum energy density
of an electron, the maximum mass for stars composed of
preons can be estimated to ∼ 102 Earth masses and the
maximum radius to ∼ 1 m. The minimum central density
is of the order of ∼ 1023 g/cm3. Preon stars (or “nuggets”)

with a maximum mass of ∼ 10−1 Earth masses and ra-
dius ∼ 10−3 m could have been formed by the primor-
dial density fluctuations in the early universe. By utilizing
gamma-ray bursts, or white dwarfs in the large magellanic
cloud as light sources, an intermediate preon star would
produce diffraction lines in the spectrum, which might be
observable. Due to the need for observational clues in the
cold dark matter sector, this could prove compositeness
plausible without much dedicated effort. This approach
might complement direct tests of preon models at particle
accelerators, especially at high energies, since preon stars
might be observable even if the energy scale of preon inter-
actions is far beyond reach of any existing or near future
particle accelerator.
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